News

  • 0
  • 0

Silicon is the most promising electrode material for next-generation lithium-ion batteries

Since the beginning of this year, people around the world have felt the pressure of rising prices. Not only the rise in oil prices but also different industries have seen soaring prices. According to the latest data, from August 2021 to the present, the inflation rate in the United States has risen for 6 consecutive months, and this data has soared from the previous 5.3% to 7.9% today. Inflation in the United States, the global Many countries have been affected.
According to experts' forecasts, the inflation rate in the United States may exceed 10% this year, which will face the danger of collapse, which has a great impact on global inflation, including Nano silicon anode material silicon powder.

Overview of nano silicon anode material silicon powder

Silicon is the most promising electrode material for next-generation lithium-ion batteries, with a specific capacity (3600 mAh/g) about 10 times higher than graphite (372 mAh/g). However, due to the significant expansion (over 300%) of the material under load (lithiation) and the instability of the solid electrolyte interface layer (SEI), its use is severely restricted. The poor mechanical stability and chemical passivation performance of silicon electrodes make the cycle performance of silicon electrodes far unable to meet the requirements of battery systems, and a lot of research and suggestions have been stimulated to circumvent these limitations.

{xunruicms_img_title}

During the lithium insertion process, the volume of silicon changes so much (about 400%) that the silicon cracks and falls off the collector, causing the prototype lithium-silicon battery to lose most of its capacity in less than 10 charge and discharge cycles. The key to the success of large-capacity lithium-ion batteries is to solve the capacity and stability problems of lithium-ion silicon.

Silicon anode materials have shown great potential in improving the efficiency and energy storage capacity of lithium-ion batteries. Until recently, their main disadvantage was surface passivation through oxidation, a process that increases impedance and reduces anode circularity. Our high-purity silicon anode materials can achieve high specific capacity without significantly affecting cycle life.

Nano silicon anode material silicon powder application

Silicon is the most promising anode material in the next generation of lithium-ion batteries. Nano silicon anode materials are used in cylindrical, flexible and aluminum shell batteries. Our silicon anode powder can be dispersed in the battery solvent while preventing agglomeration. They are designed to bond seamlessly with other battery materials and produce uniform and stable coatings. Therefore, they are suitable for a range of applications, including lithium-ion batteries, photovoltaics, semiconductors, and electronics.

Nano silicon anode material silicon powder price

The price of nano-silicon anode material silicon powder product varies randomly with factors such as production cost, transportation cost, international situation, exchange rate, and supply and demand of nano-silicon anode material silicon powder market. Tanki New Materials Co.,Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for nano silicon anode material silicon powder product materials, please feel free to contact to obtain the latest price of nano-silicon anode material silicon powder products.

Supplier of nano silicon anode material silicon powder

As a global supplier of nano silicon anode material silicon powder, Tanki New Materials Co.,Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.

Silicon Si powder Properties

Other NamesSilicon Si powder, Si, Si powder, nano silicon powder
CAS No.7440-21-3
Compound FormulaSi
Molecular Weight28.08 g/mol
Appearancebrown, or silvery
Melting Point1414°C 
Boiling Point2900°C 
Density2330kg/cm3
Purity>99.95%
Electrical Resistivity3-4 microhm-cm @ 0 °C
Poisson's Ratio0.064 - 0.28
Specific Heat0.168 Cal/g/K @ 25 °C
Thermal Conductivity1.49 W/cm/K @ 298.2 K
Thermal Expansion (25 °C) 2.6 µm·m-1·K-1
Young's Modulus51-80 GPa
Exact MassN/A
Monoisotopic MassN/A

Silicon Si powder Health & Safety Information

Safety WarningWarning
Hazard StatementsH315-H319-H335
Hazard CodesH228
Risk Codes11
Safety Statements16-33-36
RTECS NumberVW0400000
Transport InformationUN 1346 4.1/PG 3
WGK Germany2


The Nano silicon anode material silicon powder industry has experienced demand expectations driven by the rise and the off-season tired stock driven by the seasonal decline in two rounds of the market. Affected by the COVID-19 epidemic and other factors, inventories of manufacturers continue to accumulate, putting pressure on market sentiment. In addition to off-season factors, the weak trend of Nano silicon anode material silicon powder also reflects the market's concern about the epidemic and some other related enterprises' financial situation. 

Inquery us

Our Latest News

Erbium oxide Er2O3 powder properties

Erbium oxide Er2O3 powder is a pink powder with the chemical formula Er2O3, mainly used as an additive for yttrium iron garnet and a control material for nuclear reactors.…

What is the applicable scope of FeSi2 iron disilicide powder?

Iron disilicide is an inorganic silicon compound with a molecular formula of FeSi2 and a molecular weight of 119.975. It is a gray powder, odorless, tetragonal crystals. For hydrogen catalytic oxidation and methanation catalyst.…

Sodium Oleate Properties

Sodium oleate, also known as sodium octadecenoate, and sodium oleate are organic oils that can be used as emulsifiers. Sodium oleate is used in medicine.…